This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK


## Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title $\sim$ content=t713455674
Preparations, $\mathbb{R}$ spectra and crystal structures of cyano-bridged bimetallic complexes of zinc(II) and cadmium(II) with tetracyanopalladate(II)
Ahmet Karadağă ${ }^{\text {a }}$; Ahmet Bulut ${ }^{\text {b }}$; Ayşegül Şenocak ${ }^{\text {a }}$; İbrahim Uçar ; Orhan Büyükgüngör ${ }^{\text {b }}$ ${ }^{\text {a }}$ Chemistry Department, Gaziosmanpaşa University, Tokat, Turkey ${ }^{\text {b }}$ Physics Department, Ondokuz Mayıs University, Samsun, Turkey

First published on: 18 June 2007

To cite this Article Karadağ, Ahmet, Bulut, Ahmet, Şenocak, Ayşegül , Uçar, İbrahim and Büyükgüngör, Orhan(2007) 'Preparations, IR spectra and crystal structures of cyano-bridged bimetallic complexes of zinc(II) and cadmium(II) with tetracyanopalladate(II)', Journal of Coordination Chemistry, 60: 19, 2035 - 2044, First published on: 18 June 2007 (iFirst)
To link to this Article: DOI: 10.1080/00958970701236701
URL: http://dx.doi.org/10.1080/00958970701236701

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

# Preparations, IR spectra and crystal structures of cyano-bridged bimetallic complexes of zinc(II) and cadmium(II) with tetracyanopalladate(II) 

AHMET KARADAĞ* ${ }^{*} \dagger$, AHMET BULUT*, AYŞEGÜL ŞENOCAK $\dagger$, IBRAHIM UÇAR\$ and ORHAN BÜYÜKGÜNGÖR $\ddagger$<br>$\dagger$ Chemistry Department, Gaziosmanpaşa University, Tokat, Turkey<br>$\ddagger$ Physics Department, Ondokuz Mayıs University, Samsun, Turkey

(Received 2 October 2006; in final form 2 March 2007)


#### Abstract

The novel heteronuclear compounds $\left[\mathrm{Zn}(\text { hydet-en })_{2} \mathrm{Pd}(\mathrm{CN})_{4}\right]$ (1) and $\left[\mathrm{Cd}(\text { hydet-en })_{2} \mathrm{Pd}(\mathrm{CN})_{4}\right]$ (2) \{hydet-en: $N$-(2-hydroxyethyl-ethylenediamine)\} have been synthesized and characterized by elemental analyses and IR spectra. The crystal structures of $\mathbf{1}$ and $\mathbf{2}$ have been determined by X-ray diffraction. Structural analysis shows that both compounds have shown a polymeric chain, in which the $\mathrm{Zn}(\mathrm{II}) / \mathrm{Pd}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{II})$ centres are linked by two CN groups. Both zinc and cadmium atoms are six coordinate with two trans cyanide-nitrogen and four hydet-en N atoms in a distorted octahedron arrangement; the palladium atoms in $\mathbf{1}$ and $\mathbf{2}$ are four coordinate with four cyanide-C atoms in a square planar arrangement. The chains in both compounds are connected through weak interchain hydrogen bonds, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$, thereby forming a three-dimensional network.


Keywords: Heteronuclear Pd complexes; Polymeric chains; Cyano-bridged complexes; Crystal structures

## 1. Introduction

The coordination chemistry of cyanide-bridged metal complexes attracts interest because of their magnetic behaviour, unusual electronic states and photochemical properties $[1-4]$. The cyanide ion may coordinate either through the C atom, as a monodentate ligand, or through the C and N atoms as a bridging ligand, forming polymeric compounds with a one-, two- or three-dimensional networks. The construction of one-dimensional system can be achieved by the use of the 'brick and mortar' method [5, 6], where the metal cation forms the bricks and the cyano complex anion represents the mortar.

Zinc(II) and cadmium(II) ions, as the cationic central atom in cyano complexes, generally adopt a coordination number of six. Therefore, four vertices around the metal

[^0]cation need to be coordinated by terminate ligands, and two form a chain structure [7]. Cyanocomplexes, especially tetracyanonickelate, have been systematically investigated [8-10], but very little has been published to date on the structures of tetracyanopalladate complexes [11-13]. As part of our ongoing research on cyanidebridged complexes, we have synthesized compounds $\mathbf{1}$ and $\mathbf{2}$; this article reports the syntheses, IR spectra and crystal structures of these one-dimensional heterometallic polymeric complexes, $\left[\mathrm{Zn}(\text { hydet-en })_{2} \operatorname{Pd}(\mathrm{CN})_{4}\right]_{n}$, \{catena-poly $[\mu$-cyano$1: 2 \kappa^{2} \mathrm{C}$ : N-dicyano- $1 \kappa^{2} \mathrm{C}$-trans-bis $\quad\left[\mathrm{N}\right.$-(2-hydroxyethyl)ethane-1,2-diamine- $\left.2 \kappa^{2} N, N^{\prime}\right]$ zinc(II)palladium(II) $]-\mu$-cyano- $\left.\left.1: 2^{\prime 2} \mathrm{C}: \mathrm{N}\right]\right\}$, and $\left[\mathrm{Cd}(\text { hydet-en })_{2} \mathrm{Pd}(\mathrm{CN})_{4}\right]_{n}$, \{catenapoly[ $\mu$-cyano- $1: 2 \kappa^{2} \mathrm{C}$ : N-dicyano- $1 \kappa^{2} \mathrm{C}$-trans-bis [ N -(2-hydroxyethyl) ethane-1,2-dia-mine- $\left.2 \kappa^{2} N, N^{\prime}\right]$ cadmium(II)palladium(II)]- $\mu$-cyano- $\left.\left.1: 2^{\prime} \kappa^{2} \mathrm{C}: \mathrm{N}\right]\right\}$. A mixed $\mathrm{N} / \mathrm{O}-$ donor ligand with three donor sites [14-18] was used in this study.

## 2. Experimental

### 2.1. Materials and instrumentation

Palladium(II) chloride $\left(\mathrm{PdCl}_{2}\right)$, zinc(II) chloride $\left(\mathrm{ZnCl}_{2}\right)$, cadmium(II) sulfate $8 / 3$ hydrate $\left(\mathrm{CdSO}_{4} \cdot 8 / 3 \mathrm{H}_{2} \mathrm{O}\right)$, [ $N$-(2-hydroxyethyl-ethylenediamine) $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)$ ], potassium cyanide ( KCN ) were purchased from commercial sources and used as received. Elemental analyses ( $\mathrm{C}, \mathrm{H}, \mathrm{N}$ ) were carried out by standard methods (TÜBITTAK Ankara Test and Analysis Laboratory, Turkey). The IR spectra were recorded on a Jasco 430 FTIR spectrophotometer using KBr pellets in the $4000-200 \mathrm{~cm}^{-1}$ range.

### 2.2. Syntheses

2.2.1. $\left[\mathbf{Z n}(\mathbf{h y d e t}-\mathrm{en})_{\mathbf{2}} \mathbf{P d}(\mathbf{C N})_{\mathbf{4}}\right](\mathbf{1}) . \mathrm{KCN}(0.147 \mathrm{~g}, 2.257 \mathrm{mmol})$ was added to 20 mL $\mathrm{PdCl}_{2}(0.100 \mathrm{~g}, 0.564 \mathrm{mmol})$ solution in $1 / 4$ ethanol-water mixture. Then, $\mathrm{ZnCl}_{2}$ $(0.077 \mathrm{~g}, 0.565 \mathrm{mmol})$ in ethanol $(10 \mathrm{~mL})$ was added to the solution which became a cloudy white mixture. $N$-(2-hydroxyethyl)-ethylenediamine ( $0.117 \mathrm{~g}, 1.123 \mathrm{mmol}$ ) in 10 mL ethanol was added to this mixture dropwise. The resultant solution was left to crystallize at room temperature and white crystals of $\mathbf{1}$ suitable for X-ray measurement formed by slow evaporation in a few days. Anal. Calcd For 1 (\%): C, 29.7; H, 5.0; N, 23.1. Found: C, 29.9; H, 5.3; N, 23.1.
2.2.2. $\left[\mathbf{C d}(\text { hydet-en })_{2} \mathbf{P d}(\mathbf{C N})_{4}\right]$ (2). A solution of $\mathrm{PdCl}_{2}(0.100 \mathrm{~g}, 0.564 \mathrm{mmol})$ in an ethanol-water mixture (Ratiol/4; 20 mL ) was added with stirring to solid KCN $(0.147 \mathrm{~g}, 2.257 \mathrm{mmol}) . \mathrm{CdSO}_{4} \cdot 8 / 3 \mathrm{H}_{2} \mathrm{O}(0.145 \mathrm{~g}, 0.565 \mathrm{mmol})$ was then added slowly to the solution, which became a cloudy white mixture. This mixture was added slowly to $N$-(2-hydroxyethyl)-ethylenediamine $(0.117 \mathrm{~g}, 1.123 \mathrm{mmol})$ with stirring. The solution was left to crystallize at room temperature and white crystals of 2, suitable for X-ray analysis, formed by slow evaporation in a few days. Anal. Calcd For 2 (\%): C, 27.1; H, 4.5; N, 21.1. Found: C, 27.4; H, 4.4; N, 21.2.

Table 1. Crystal data and structure refinement for $\left[\mathrm{ZnPd}(\mathrm{CN})_{4}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$ and $\left[\mathrm{CdPd}(\mathrm{CN})_{4}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$.

| Compound | $\left[\mathrm{ZnPd}(\mathrm{CN})_{4}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$ | $\left[\mathrm{CdPd}(\mathrm{CN})_{4}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$ |
| :---: | :---: | :---: |
| Color | Colorless | Colorless |
| Empiricial formula | $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{PdZn}$ | $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{CdN}_{8} \mathrm{O}_{4} \mathrm{Pd}$ |
| Formula weight | 484.16 | 531.19 |
| Crystal system | Triclinic | Monoclinic |
| Space group | $P^{\overline{1}}$ | C2/c |
| Unit cell dimensional ( $\left(\begin{array}{l} \\ ,\end{array}\right)$ |  |  |
| $a$ | 7.1950(8) | 10.031(3) |
| $b$ | 7.9840(9) | 11.3760(9) |
| c | 9.3900(11) | 17.830(3) |
| $\alpha$ | 100.117(9) | 90.00 |
| $\beta$ | 101.551(9) | 99.771(7) |
| $\gamma$ | 107.452(9) | 90.00 |
| $V\left(\AA^{3}\right)$ | 487.86(10) | 2005.1(7) |
| Z | 1 -86(10) | 4 |
| Absorption coefficient ( $\mathrm{mm}^{-1}$ ) | 2.172 | 1.978 |
| $\theta_{\text {max }}\left({ }^{\circ}\right.$ for data collection) | 27.5 | 27.5 |
| Reflections collected | 1935 | 2301 |
| Independent reflections | $2238\left(R_{\text {int }}=0.0607\right)$ | $2301\left(R_{\text {int }}=0.047\right)$ |
| Reflections with $I>2 \sigma(I)$ | 1935 | 1974 |
| $D_{\text {Calcd }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$ | 1.648 | 1.760 |
| Crystal size ( $\mathrm{mm}^{3}$ ) | $0.300 \times 0.240 \times 0.170$ | $0.330 \times 0.240 \times 0.130$ |
| Absorption correction | Integration | Integration |
| Refinement method | Full-matrix least-squares on $F^{2}$ | Full-matrix least-squares on $F^{2}$ |
| Extinction coefficient | 0.0196 (15) | 0.00325(16) |
| Final $R$ indices [F>2( $F^{2}$ ) | $R_{1}=0.0225, w R_{2}=0.0512$ | $R_{1}=0.0209, w R_{2}=0.0496$ |
| Goodness-of-fit on $F^{2}$ | 0.997 | 1.016 |
| Largest difference peak and hole (e $\AA^{-3}$ ) | 0.674 and -0.970 | 0.367 and -0.492 |
| CCDC deposition no. | 294534 | 294535 |

### 2.3. X-ray crystallography

A suitable single crystal was mounted on a glass fiber and data collection performed on a STOE IPDSII image plate detector using $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ( $\lambda=0.71019 \AA$ ). Details of crystal structures are given in table 1. Data collection: Stoe X-AREA [19]. Cell refinement: Stoe X-AREA [19]. Data reduction: Stoe X-RED [19]. The structure was solved by direct-methods using SIR97 [20] and anisotropic displacement parameters were applied to non-hydrogen atoms in a full-matrix least-squares refinement based on $F^{2}$ using SHELXL-97 [21]. Hydrogen atoms (on C and O atoms) were placed at calculated positions ( $\mathrm{C}-\mathrm{H}=0.97 \AA$; $\mathrm{O}-\mathrm{H}=0.82 \AA$ ) and were allowed to ride on the parent atom $\left[U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}(\mathrm{C}) ; U_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}(\mathrm{O})\right]$. The amine H atoms were placed from the difference map and were refined with $\mathrm{N}-\mathrm{H}$ distance restrained to be $0.87(2) \AA$ in 1 and freely refined in 2 with $\mathrm{N}-\mathrm{H}$ distances in the range $0.81(4)-0.86(3) \AA$. All non-hydrogen atoms of the complexes were refined anisotropically. Molecular drawings were obtained using ORTEP-III [22].

## 3. Results and discussion

### 3.1. The FT-IR spectra

The spectra of free hydet-en (a), complex 1 (b) and complex 2 (c) are illustrated in figure 1. The hydet-en ligand shows infrared bands at 3355-3210 $\nu(\mathrm{OH})-\nu(\mathrm{NH})$,


Figure 1. The FT-IR spectra of hydet-en (a), $\mathbf{1}$ (b) and 2 (c).
$(2949,2868) \nu(\mathrm{CH}), 1616 \delta(\mathrm{NH}), 1469 \delta(\mathrm{CH})$ and $1067 \mathrm{~cm}^{-1} \nu(\mathrm{CO})$. The stretching vibration of OH of $\mathbf{2}$ is observed at $3606 \mathrm{~cm}^{-1}$, while the stretching vibrations of OH for $\mathbf{1}$ is observed at $3328 \mathrm{~cm}^{-1}$. The $\nu(\mathrm{NH})$ vibrations of $\mathbf{1}$ and $\mathbf{2}$ are observed at 3288, 3172 and at $3338,3303,3259 \mathrm{~cm}^{-1}$, respectively, due to splitting of the $v(\mathrm{NH})$ bands of the both complexes.

One of the interesting points in the cyano metal complexes is the bonding mode of ligand since both the carbon and the nitrogen atoms may be bonded to the metal ion. The C-end of the cyano group as a ligand produces a strong field effect, while the N -end of the cyano group behaves as a medium ligand with a ligand field strength lower than ammonia [23]. The bridging systems are intermediate and this behaviour can be influenced by other coordinated ligands. Bridging of two metal ions in the form $\mathrm{M}-\mathrm{CN}-\mathrm{M}^{\prime}$, is well known, while alternate types of bridging are possible [24]. The cyano stretching wavenumber indicates the type of coordination shifting to higher wavenumbers than free cyano $\left\{2078 \mathrm{~cm}^{-1}\right.$ in $\mathrm{KCN}, 2143 \mathrm{~cm}^{-1}$ in $\mathrm{K}_{2}\left[\operatorname{Pd}(\mathrm{CN})_{4}\right]$, $2150 \mathrm{~cm}^{-1}$ in $\left.\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]\right\}$ [24]. It has been observed that bridging ( $-\mathrm{CN}-$ ) cyano bands generally appear above $2150 \mathrm{~cm}^{-1}$. Apart from that the cyano complexes also exhibit stretching and bending, $\mathrm{M}-\mathrm{C}(\mathrm{N})$, bands in the low wavenumber region.

Two strong and sharp absorption bands at 2164 and $2141 \mathrm{~cm}^{-1}$ in the IR spectrum of complex 2 can easily be attributed to bridging cyano and terminal cyano bands, respectively, and the bands at 2160 and $2144 \mathrm{~cm}^{-1}$ in the IR spectrum of complex 1 correspond to bridging cyano and terminal cyano bands, respectively. The observed differences in these two cyano stretching vibrations are important evidence for formation of cyano-bridged complexes with the bridging cyano wavenumber higher than the terminal cyano. This shift was attributed to the kinematic coupling placing a mechanical constraint upon the bridging cyano by the second metal [18, 25].

In addition to cyano stretching bands, $\mathbf{1}$ and $\mathbf{2}$ exhibit $\mathrm{Pd}-\mathrm{C}$ stretching and $\mathrm{Pd}-\mathrm{C}-\mathrm{N}$ bending bands in the regions of $600-350 \mathrm{~cm}^{-1}$. The absorption bands observed at 515 and $480 \mathrm{~cm}^{-1}$ in $\mathbf{1}$ and in $\mathbf{2}$ at 499 and $463 \mathrm{~cm}^{-1}$ can be attributed to these stretching and bending vibrations, respectively.

### 3.2. Structure of $\left[\mathrm{Zn}(\text { hydet-en })_{2} \operatorname{Pd}(C N)_{4}\right]$ (1)

In the polymeric unit $\mathrm{Pd}(\mathrm{II})$ is coordinated by four cyanide ligands in a square-plane, as shown in figure 2. Two of the four cyano groups in trans positions bridge, whereas other cyano groups are terminal. The $\mathrm{Pd}-\mathrm{C}$ bond lengths and $\mathrm{C}-\mathrm{Pd}-\mathrm{C}, \mathrm{N} \equiv \mathrm{C}-\mathrm{Pd}$ bond angles (see table 2 for details) in the $\left[\operatorname{Pd}(\mathrm{CN})_{4}\right]^{2-}$ anion are comparable with those found in previously reported $\left[\mathrm{Cu}(\text { dimen })_{2} \operatorname{Pd}(\mathrm{CN})_{4}\right]$ [13] and $\left[\mathrm{Cu}(\mathrm{en})_{2} \operatorname{Pd}(\mathrm{CN})_{4}\right]$ [12] complexes. In 1, like $\mathrm{Cu}(\text { dimen })_{2}^{2+} \mathrm{Pd}(\mathrm{CN})_{4}^{2-}$ and $\mathrm{Cu}(\mathrm{en})_{2}^{2+} \mathrm{Pd}(\mathrm{CN})_{4}^{2-}$ complexes, the bridging cyano groups in both cation and anion are trans, classified as a 2,2-TT type chain. The zinc(II) ion has an octahedral coordination with four amine N atoms from two symmetry-related bidentate hydet-en ligands and two N atoms from the cyano groups. All the ligands show a trans arrangement of the donor atoms around the zinc(II) atom. The basal plane is constructed by the coordination of four N atoms of bidentate hydet-en ligands, and two N atoms of CN -groups occupy axial positions. In the basal plane, the $\mathrm{Zn}-\mathrm{N}$ distances are in the range 2.138(2)-2.178(2) $\AA$, while the axial $\mathrm{Zn}-\mathrm{N}$ bond distance is $2.215(2) \AA$. The $\mathrm{Zn}-\mathrm{N}$ (secondary amine) bond length is slightly longer than $\mathrm{Zn}-\mathrm{N}$ (primary amine); this may be a consequence of steric differences between the N atoms. The angle subtended at the $\mathrm{Zn}(\mathrm{II})$ metal ion by the hydet-en ligand is $81.63(7)^{\circ}$, which is significantly greater than that of complex $\mathbf{2}$. The $\mathrm{C} 5 \equiv \mathrm{~N} 1-\mathrm{Zn}$ bond angle is $168.70(2)^{\circ}$, resulting in a one-dimensional chain being formed while the $\mathrm{Pd}-\mathrm{C} 5 \equiv \mathrm{~N} 1$ angle $\left[178,6(2)^{\circ}\right]$ is essentially linear. This angle is comparable with those found previously $\left\{\mathrm{C} \equiv \mathrm{N}-\mathrm{Cd}: 167.30(12)^{\circ}[7]\right\}$. This deviation


Figure 2. The molecular structure of $\mathbf{1}$, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (iv) $1-x, 2-y, 1-z$ (v) $-x, 2-y,-z$.]

Table 2. Selected bond lengths $(\AA)$ and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$ and $\mathbf{2}$.

| $\mathbf{1}$ |  |  | $\mathbf{2}$ |
| :--- | :---: | :--- | ---: |
| C5-N1 | $1.139(3)$ | C5-N3 | $1.130(3)$ |
| C6-N4 | $1.133(3)$ | C6-N4 | $1.136(3)$ |
| C5-Pd1 | $1.9880(19)$ | C5-Pd1 | $1.987(2)$ |
| C6-Pd1 | $1.990(2)$ | C6-Pd1 | $1.989(3)$ |
| N3-Zn1 | $2.138(2)$ | N3-Cd1 | $2.328(2)$ |
| N1-Zn1 | $2.2150(19)$ | N1-Cd1 | $2.360(3)$ |
| N2-Zn1 | $2.1782(18)$ | N2-Cd1 | $2.3983(19)$ |
| C5-N1-Zn1 | $168.7(2)$ | N3-C5-Pd1 | $179.2(2)$ |
| N3-Zn1-N2 | $81.63(7)$ | N4-C6-Pd1 | $178.4(3)$ |
| N3-Zn1-N1 | $90.46(8)$ | N3-Cd1-N1 | $85.94(9)$ |
| N2-Zn1-N1 | $91.59(7)$ | N3-Cd1-N2 | $158.74(8)$ |
| N1-C5-Pd1 | $178.6(2)$ | N1-Cd1-N2 | $74.29(8)$ |
| N4-C6-Pd1 | $178.0(2)$ | C5-N3-Cd1 | $167.9(2)$ |
| N3-C5-Pd1 | $179.2(2)$ | C5-Pd1-C6 | $89.96(10)$ |

Table 3. Hydrogen bonds $\left(\AA,{ }^{\circ}\right)$ for $\mathbf{1}^{\mathrm{a}}$ and $\mathbf{2}^{\mathrm{b}}$.

| D-H... ${ }^{\text {A }}$ | d(D-H) | $\mathrm{d}(\mathrm{H} \cdots \mathrm{A})$ | $\mathrm{d}(\mathrm{D} \cdots \mathrm{A})$ | $\angle(\mathrm{DHA})$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |
| N3-H1 $\cdots$ N $4^{\text {i }}$ | 0.845(17) | 2.52(2) | 3.329(3) | 160(3) |
| $\mathrm{N} 3-\mathrm{H} 2 \cdots \mathrm{O}{ }^{\text {ii }}$ | 0.843(16) | 2.27(2) | 3.028(3) | 149(2) |
| $\mathrm{O} 1-\mathrm{H} 4 \cdots \mathrm{~N} 4^{\text {iii }}$ | 0.82 | 2.02 | $2.799(3)$ | 157.3 |
| N2-H3 $\cdots$ O1 | 0.845(16) | 2.50(3) | 2.830(2) | 104(2) |
| 2 |  |  |  |  |
| N1-H1 $\cdots$ N $4^{\text {i }}$ | 0.81(4) | 2.57(4) | $3.306(4)$ | 150(3) |
| $\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {ii }}$ | 0.86(3) | 2.35 (3) | 3.087(3) | 143(3) |
| N2-H3 . . O1 | 0.83(3) | 2.44(3) | 2.800(3) | 108(2) |
| $\mathrm{O} 1-\mathrm{H} 4 \cdots \mathrm{~N} 4^{\text {iii }}$ | 0.82 | 2.04 | 2.848(3) | 168 |

Symmetry codes: ${ }^{\text {a }}$ (i) $x, y, 1+z$; (ii) $x-1, y, z$; (iii) $1-x, 1-y,-z$.
${ }^{\mathrm{b}}$ (i) $1 / 2+x, 1 / 2+y, z$; (ii) $1 / 2+x, y-1 / 2, z$; (iii) $-x, 1+y, 1 / 2-z$.
from linearity is greater than observed in related structures [26, 27]. However, in $\mathrm{Cu}(\mathrm{en})_{2}^{2+} \mathrm{Pd}(\mathrm{CN})_{4}^{2-}$ and $\mathrm{Cu}(\text { dimen })_{2}^{2+} \mathrm{Pd}(\mathrm{CN})_{4}^{2-}$ complexes, the $\mathrm{C} \equiv \mathrm{N}-\mathrm{Cu}$ angles are $121.6(2)^{\circ}$ and $123.1(2)^{\circ}$, respectively; these angles suggest some degree of ionic character of the $\mathrm{Cu}-\mathrm{N}$ bond which is found to be smaller than the corresponding bound value of 1 . The $\mathrm{Pd}-\mathrm{C} 6 \equiv \mathrm{~N} 4$ angle $\left[178.0(2)^{\circ}\right]$ is also almost linear, as expected.

The one-dimensional chains are linked to form a three-dimensional network via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ weak hydrogen bonds (see table 3 for details). $\mathrm{NH}, \mathrm{NH}_{2}$, and OH groups are involved in interchain hydrogen bonding, forming a layered structure (figure 3). The intramolecular $\mathrm{Zn} \cdots \mathrm{Zn}^{\mathrm{vi}}$ [symmetry code (vi): $x-1$, $y, z-1]$ distance is $10.625(7) \AA$, whereas the first and second shortest interchain $\mathrm{Zn} \cdots \mathrm{Zn}^{\mathrm{ii}}, \mathrm{Zn} \cdots \mathrm{Zn}^{\text {vii }}$ [symmetry code (ii): $x-1, y, z$, (vii): $\left.x, y-1, z\right]$ distances are 7.1950(5) and 7.9840(5) A, respectively.

### 3.3. Structure of $\left[\mathrm{Cd}(\text { hydet-en })_{2} \mathrm{Pd}(\mathrm{CN})_{4}\right]$ (2)

The X-ray crystal structure determination of $\mathbf{2}$ reveals that $\mathrm{Pd}(\mathrm{II})$ is coordinated by four cyanide ligands (two cyano groups are terminal, whereas two trans cyano groups constitute the bridges) in a square-planar arrangement, as shown in figure 4. The $\mathrm{Pd}-\mathrm{C}$


Figure 3. ORTEP III drawing of 2, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the $40 \%$ probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (iv) $-x, y, 0.5-z$; (v) $-x,-y, 1-z$.].


Figure 4. The zigzag chain structure of $\mathbf{1}$, with intra- and interchain interactions shown as dashed lines.
bond lengths and $\mathrm{C}-\mathrm{Pd}-\mathrm{C}$ and $\mathrm{N}-\mathrm{C}-\mathrm{Pd}$ bond angles (table 2) in $\left[\mathrm{Pd}(\mathrm{CN})_{4}\right]^{2-}$ are comparable with those found in previously reported heteronuclear $\left[\mathrm{Cu}(\mathrm{en})_{2}^{2+}\right]\left[\mathrm{Pd}(\mathrm{CN})_{4}^{2-}\right]$ (en: ethylenediamine) $[12]$ and $\left[\mathrm{Cu}(\text { dimen })_{2}^{2+}\right]\left[\mathrm{Pd}(\mathrm{CN})_{4}^{2-}\right]$ (dimen: dimethylethylenediamine) complexes [13] of the two bridging cyano groups in 2, one is in a mutually trans position at the Pd atom and the other is cis at the Cd atom; the resulting chain can be classified as a 2,2 -CT type. There are only a few
examples of zigzag chain structures [28], and no Pd coordination polymer exhibiting a 2,2-CT type zigzag chain. The reason that two types of chains are observed, although the same ligands are used, can be attributed to ionic radius of $\mathrm{Cd}^{2+}$ ion which makes the $\mathrm{N}-\mathrm{Cd}$ distance [2.328(2)] slightly bigger than that of $\mathrm{N}-\mathrm{Zn}$ [2.215(2)]. This slight change may affect the orientation of $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ groups. In $\left[\mathrm{Cu}(\mathrm{en})_{2} \mathrm{Pd}(\mathrm{CN})_{4}\right],\left[\mathrm{Cu}(\text { dimen })_{2}^{2+}\right.$ $\mathrm{Pd}(\mathrm{CN})_{4}^{2-}$, and $\left[\mathrm{Ni}(\mathrm{en})_{2} \operatorname{Pd}(\mathrm{CN})_{4}\right][29]$, the bridging cyano groups in both cation and anion are trans. Therefore, these compounds are 2, 2-TT type chains.

The coordination environment of the Cd atom in $\mathbf{2}$ can be best described as distorted octahedral. The basal plane is constructed from three N atoms of the bidentate hydet-en ligand and $\mathrm{N}^{\text {iv }}$ of the cyanide group [symmetry code (iv): $-x, y, 1 / 2-z$ $\left[\mathrm{Cu}(\mathrm{en})_{2} \mathrm{Pd}(\mathrm{CN})_{4}\right][12],\left[\mathrm{Cu}(\text { dimen })_{2} \mathrm{Pd}(\mathrm{CN})_{4}\right][13]$ whereas atoms N 2 and N 3 occupy the axial positions. The $\mathrm{Cd}-\mathrm{N}$ distances reveal a small tetragonal distortion of the $\mathrm{Cd}-\mathrm{N}_{4}$ plane (r.m.s. deviation $0.1187 \AA$ ), with the $\mathrm{Cd}-\mathrm{N}$ bonds to the secondary amines [2.398(2) $\AA$ ] being slightly longer than the $\mathrm{Cd}-\mathrm{N}$ bonds to the primary amines [2.360(3) $\AA$ ]. The largest deviation from the basal plane is $0.1541(14) \AA$ for atom $\mathrm{N} 1^{\text {iv }}$, and the Cd atom is $0.0004(9) \AA$ out of this mean plane.

All the $\mathrm{N}-\mathrm{Cd}-\mathrm{N}$ bond angles deviate significantly from $90^{\circ}$ or $180^{\circ}$, presumably the result of steric constraints. The angle subtended at the Cd atom by the hydet-en ligand is $74.29(8)^{\circ}$, in agreement with previously reported values for hydet-en-containing $\mathrm{Cd}(\mathrm{II})$ complexes [14, 16]. The $\mathrm{C} 5 \equiv \mathrm{~N} 3-\mathrm{Cd} 1$ bond angle is $167.9(2)^{\circ}$, resulting in the formation of a one-dimensional zigzag chain, while the $\mathrm{Pd}-\mathrm{C} 5 \equiv \mathrm{~N} 3$ angle [179.2(2) ${ }^{\circ}$ ] is essentially linear. This angle is comparable with that found in our previously reported heteronuclear $\left[\mathrm{Ni}(\mathrm{CN})_{4} \mathrm{Cd}(\text { hydet-en })_{2}\right]$ complex $\left(\mathrm{C} \equiv \mathrm{N}-\mathrm{Cd} 167.30(12)^{\circ}\right)$ [16] and with the corresponding angle in $\mathbf{1}$.

The crystal packing in $\mathbf{2}$ is formed by $\mathrm{NH}, \mathrm{NH}_{2}$ and OH groups, which are involved in interchain hydrogen bonding (figure 5). Each polymeric unit is linked


Figure 5. Three dimensional structure of 2, with intra- and interchain interactions shown as dashed lines.
to a second unit via weak interchain $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding interactions. These interactions are also effective in forming a layered structure, and the geometry of the interactions is given in table 3. The intramolecular $\mathrm{Cd} 1 \cdots \mathrm{Cd} 1^{\mathrm{v}}$ distance is $10.828(5) \AA$, whereas the shortest interchain $\mathrm{Cd} 1 \cdots \mathrm{Cd} 1^{\mathrm{vi}}$ distance is $7.583(2) \AA$ [symmetry codes: (v) $-x,-y, 1-z$; (vi) $x-1 / 2$, $y-1 / 2, z]$.

## 4. Conclusions

One-dimensional cyano-bridged $\mathbf{1}$ and $\mathbf{2}$ coordination polymers have been prepared by the brick and mortar method and characterized. The most striking feature of these complexes is that these structures exhibit a 2,2-TT type chain for $\mathbf{1}$ and a 2,2-CT type zigzag chain for 2 in a repeated periodic fashion which is, to our knowledge, not reported before.

## Supplementary data

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as the supplementary publication No. CCDC 294534 for $\left[\mathrm{ZnPd}(\mathrm{CN})_{4}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]$ and CCDC 294535 for $\left[\mathrm{CdPd}(\mathrm{CN})_{4}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]$. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223336033; Email: deposit@ccdc.cam.ac.uk).

## Acknowledgement

This work is supported by the Scientific and Technical Research Council of Turkey (TUBITAK, Grant TBAG-104T205) and the Gaziosmanpasa University Research Foundation (Grant 2005-04).

## References

[1] N.W. Alcock, A. Samatus, J. Szklarzevicz. J. Chem. Soc. Dalton Trans., 6, 885 (1993).
[2] D.W. Knoeppel, S.G. Shore. Inorg. Chem., 35, 5328 (1996).
[3] M. Ohba, N. Usuki, N. Fukita, H. Okawa. Inorg. Chem., 37, 3349 (1998).
[4] M. Clemente-Leon, E. Coronada, J.R. Galan-Mascaros, C.J. Gomex-Garcia, T.H. Woike, J.M. Clemente-Juan. Inorg. Chem., 40, 87 (2001).
[5] J. Černák, K.A. Abboud. Acta Cryst., C56, 783 (2000).
[6] J. Paharova, J. Černák, R. Baca, Z. Zak. Inorg. Chim. Acta, 346, 25 (2003).
[7] A. Karadağ, H. Pasaoglu, G. Kastas, O. Büyükgüngör. Acta Cryst., C60, m581 (2004).
[8] T. Kitizawa, M. Fukunaga, M. Takahashi, M. Takeda. Mol. Cryst. Liq. Cryst. A, 244, 331 (1994).
[9] (a) H. Yuge, C.H. Kim, T. Iwamoto, T. Kitazawa. Inorg. Chim. Acta, 257, 217 (1997); (b) N.F. Curtis, H. Puschman. Acta Cryst., C60, m410 (2004).
[10] Z. Smekal, Z. Trávníček, J. Mrozinski, J. Marek. Inorg. Chem. Commun., 6, 1395 (2003).
[11] U. Klement. Z. Kristallogr., 208, 285 (1993).
[12] J. Černák, J. Skorsepa, K.A. Abboud, M.W. Meisel, M. Orendac, A. Orendacova, A. Feher. Inorg. Chim. Acta., 326, 3 (2001).
[13] J. Kuchár, J. Černák, K. Abboud. Acta Cryst., C60, m492 (2004).
[14] V.T. Yılmaz, A. Karadağ, C. Thone. J. Coord. Chem., 55, 609 (2002).
[15] A. Karadağ, A. Bulut, O. Büyükgüngör. Acta Cryst., C60, m402 (2004).
[16] A. Karadağ, H. Paşaoğlu, G. Kaştaş, O. Büyükgüngör. Acta Cryst., C60, m581 (2004).
[17] H. Paşaoğlu, A. Karadağ, F. Tezcan, O. Büyükgüngör. Acta Cryst., C61, m93 (2005).
[18] A. Karadağ, H. Paşaoğlu, G. Kaştaş, O. Büyükgüngör. Z. Kristallogr., 220, 74 (2005).
[19] Stoe \& Cie X-AREA (Version 1.18) and X-RED32 (Version 1.04) Stoe \& Cie, Darmstadt, Germany (2002).
[20] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna. J. Appl. Cryst., 32, 115 (1999).
[21] G.M. Sheldrick. SHELXL97, Program fort he Refinement of Crystal Structures, University of Göttingen, Germany (1997).
[22] M.N. Burnett, C.K. Johnson. ORTEPIII, Report ORNL-6895. Oak Ridge.
[23] A.G. Sharpe. The Chemistry of the Cyano Complexes of the Transition Metals, Academic Pres, London (1976).
[24] K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York (1978).
[25] S. Zhan, D. Guo, X. Zhang, C. Du, Y. Zhu, R. Yang. Inorg. Chim. Acta, 298, 57 (2000); (b) S. Alvarez, C. Lopez, M.J. Bermejo. Trans. Met. Chem., 9, 123 (1984).
[26] P.S. Mukherjee, T.K. Maji, T. Mallah, E. Zangrando, L. Randaccio, N.R. Chaudhuri. Inorg. Chim. Acta, 315, 249 (2001).
[27] Z. Smekal, I. Cisarova, J. Mrozinski. Polyhedron, 20, 3301 (2001).
[28] A. Karadağ, H. Paşaoğlu, G. Kaştaş, O. Büyükgüngör. Acta Cryst., C60, m581 (2004).
[29] J. Cernak, J. Liplowski, E. Cizmar, A. Orendacova, M. Orendac, A. Feder, M.W. Meisel. Solid State Sci., 5, 579 (2003).


[^0]:    *Corresponding author. Email: akaradag@gop.edu.tr

